The Simplest Semidefinite Programs are Trivial

نویسندگان

  • Robert J. Vanderbei
  • Bing Yang
چکیده

We consider optimization problems of the following type: min{tr(CX) : A(X) = B,X positive semidefinite}. Here, tr(·) denotes the trace operator, C and X are symmetric n× n matrices, B is a symmetric m ×m matrix and A(·) denotes a linear operator. Such problems are called semidefinite programs and have recently become the object of considerable interest due to important connections with max-min eigenvalue problems and with new bounds for integer programming. In the context of symmetric matrices, the simplest linear operators have the following form: A(X) = MXM , where M is an arbitrary m×n matrix. In this paper, we show that for such linear operators the optimization problem is trivial in the sense that an explicit solution can be given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to generate weakly infeasible semidefinite programs via Lasserre's relaxations for polynomial optimization

Examples of weakly infeasible semidefinite programs are useful to test whether semidefinite solvers can detect infeasibility. However, finding non trivial such examples is notoriously difficult. This note shows how to use Lasserre’s semidefinite programming relaxations for polynomial optimization in order to generate examples of weakly infeasible semidefinite programs. Such examples could be us...

متن کامل

Condition numbers of stochastic mean payoff games and what they say about nonarchimedean semidefinite programming

Semidefinite programming can be considered over any real closed field, including fields of Puiseux series equipped with their nonarchimedean valuation. Nonarchimedean semidefinite programs encode parametric families of classical semidefinite programs, for sufficiently large values of the parameter. Recently, a correspondence has been established between nonarchimedean semidefinite programs and ...

متن کامل

Lecture 17 ( Nov 3 , 2011 ) : Approximation via rounding SDP : Max - Cut

The next technique we learn is designing approximation algorithms using rounding semidefinite programs. This was first introduced to obtain improved approximation algorithms for the problem of Max-Cut. A trivial 1 2-approximation is to obtain a random partition of the vertices; i.e. place every vertex v ∈ V into set S with probability 1/2. We get E(weight of cut) = 1 2 e∈E w(e) ≥ 1 2 opt and th...

متن کامل

Interval Enclosures of Upper Bounds of Roundoff Errors using Semidefinite Programming

A longstanding problem related to floating-point implementation of numerical programs is to provide efficient yet precise analysis of output errors. We present a framework to compute lower bounds of absolute roundoff errors for numerical programs implementing polynomial functions with box constrained input variables. Our study relies on semidefinite programming (SDP) relaxations and is compleme...

متن کامل

Sum of Squares Basis Pursuit with Linear and Second Order Cone Programming

We devise a scheme for solving an iterative sequence of linear programs (LPs) or second order cone programs (SOCPs) to approximate the optimal value of semidefinite and sum of squares (SOS) programs. The first LP and SOCP-based bounds in the sequence come from the recent work of Ahmadi and Majumdar on diagonally dominant sum of squares (DSOS) and scaled diagonally dominant sum of squares (SDSOS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1995